Understanding Sum of the First n Terms of an Arithmetic Series
Choose your learning level
Watch & Learn
Video explanation of this concept
concept. Use space or enter to play video.
Beginner
Start here! Easy to understand
Beginner Explanation
An arithmetic series is a list of numbers where each term increases by the same constant amount called the common difference, d. To find the sum of the first n terms, you take the average of the first term and the last term and then multiply by the number of terms. That gives the formula S_n = n(a_1 + a_n)/2.
Now showing Beginner level explanation.
Practice Problems
Test your understanding with practice problems
1
Quick Quiz
Single Choice Quiz
Beginner
What is the sum of the first 10 terms of the series $3 + 6 + 9 + \ldots$?
Please select an answer for all 1 questions before checking your answers. 1 question remaining.
2
Real-World Problem
Question Exercise
Intermediate
Teenager Scenario
Imagine you save $\$5$ in your first week, increasing by $\$2$ each subsequent week. How much will you have saved after 20 weeks?
Click to reveal the detailed solution for this question exercise.
3
Thinking Challenge
Thinking Exercise
Intermediate
Think About This
Consider the series $2, 5, 8, \ldots$. What is the sum of the first 40 terms?
Click to reveal the detailed explanation for this thinking exercise.
4
Challenge Quiz
Single Choice Quiz
Advanced
Find the sum of the series $\sum_{k=1}^{50} (3k + 2)$.
Please select an answer for all 1 questions before checking your answers. 1 question remaining.
Recap
Watch & Learn
Review key concepts and takeaways
recap. Use space or enter to play video.